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Low-Energy Equivalent-Potential Approach for Strong Interactions*
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Equations are given for constructing an equivalent potential at each energy from the crossed-channel
absorptive part. These are straightforward generalizations of the Charap-Fubini formulas. The absorptive
part can be calculated with the help of the strip approximation. If we solve our equations by iteration, we
can get the potential more and more accurately at smaller distances. The first approximation consists of an
appropriate number of crossed-channel partial waves which can be calculated by solving a Schrodinger
equation with an equivalent potential as input. The approach is applied in lowest order to calculate the
parameters of the p and q mesons.

1. INTRODUCTION

A WAY of defining a potential in strong interactions
was given by Charap and Fubini. ' The potential

was chosen so that solving the Schrodinger equation
would give the correct relativistic amplitude at zero
kinetic energy. This potential was shown to have a wide
range of validity. An explicit iterative scheme was also
proposed for constructing such a potential from the
crossed-channel absorptive part.

In Sec. 2 we shall generalize the Charap-Fubini ap-
proach by requiring that our potential reproduce the
relativistic scattering amplitude at any given energy. '
Such an equivalent potential will, of course, be different
at different energies. The absorptive part which we need
can be built up through an iterative solution of the
strip-approximation equations (Sec. 3). The lowest ap-
proximation will simply consist of an appropriate num-
ber of crossed-channel partial waves. These can, in
turn, be calculated by solving a Schrodinger equation
with an equivalent potential as input. Although such an
equation does not have, perhaps, any physical signifi-
cance except in the nonrelativistic region, it does serve
to enforce unitarity. This is just what the N(D method
does in the more usual approach.

The procedure we just described should give a reason-
able long-range force in lowest order. As we go to higher
orders we should get an increasingly accurate descrip-
tion of short-range eRects. Thus the method is essen-
tially a low-energy method, since long-range forces are
more important at low energies. This would be par-
ticularly true if we had repulsive eRects at small
distances. As we go to higher energies we would have to
treat short-range forces more and more accurately. We
would also have to go beyond two-body scattering.

*This work was begun while the author was at the California
Institute of Technology, Pasadena, California, where his work was
supported in part by the U. S. Atomic Energy Commission.

'G. M. Charap and S. P. Fubini, Nuovo Cimento 14, 540
(1959); 15, 73 (1960).' A similar approach has been used by A. A. Logunov and A. N.
Tavkhelidze, Nuovo Cimento 29, 380 (1963), and by A. A.
Logunov, A. X.Tavkhelidze, I.T. Todorov, and O. A. Khrustalev,
Nuovo Cimento 30, 134 (1963). However, they restricted them-
selves to perturbation theory and did not use the Schrodinger
equation with a local potential.
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2. CONSTRUCTION OF THE
EQUIVALENT POTENTIAL

Consider the Schrodinger equation for two particles

Vsy+ Lks —U(r, qs) $P= 0,
where lb= w vae function, k=magnitude of the three-
momentum in the c.m. system, r= radial distance, and
U(r, q') is the potential which gives the correct rela-
tivistic amplitude when k'= q'. For simplicity we shall
only look at the spinless one-channel problem for
particles of unit mass, although it would be straight-
forward to extend our results to a more general case. We
have also ignored exchange forces, since their inclusion
does not change our general arguments. If our potential
has the form

U(r, qs)= —n ' dt'v (t', q') r—'e (2)

the physical scattering amplitude f(k', t) satisfies the
Mandelstam representation. ' Here f is such that the
differential cross-section=

i f i', while t= —2ks(1 —coso)
and 0= scattering angle in the c.m. system. Thus we may
write

f(k', t) =-

where f, would be the absorptive part in the t channel,
if there were a t channel. It can be written in terms of
the double-spectral function n(k', t) as

1 " n(k", t)
f (t k') =e(t q')+ — dk" (4)

0

From unitarity we 6nd in the usual way4

n(k', t) = f,*(t',k') f, (t" k')
dt' dt" E"(k' t t', t")

ybtft —t+(k') j, (5)
where

E(k', t, t', t")= t'+t"+t'"—2(tt'+it"+t't") —tt't"k-' (6)

3 R. Rlankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.) 10, 62 (1960).' S. Mandelstam, Phys. Rev. 112, 1344 (1958).
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f((t,q')=2s '"A (t,s). (9)

If we now subtract from Eq. (4) its value at k'= g' and
use Eq. (9), we have

P2~ g2

f, (t,k') =2s '"A )(t,s)+

titll tI tll —r/s

ty(k')=t'+t"+ +2 (t't")l 1+ ll 1+
l

. (&)
k' E 4ks/ k 4k'I

Consider now the Lorentz-invariant amplitude A (s,t)
when the c.m. three-momentum is q. This is related to
the physical amplitude f through A = (q'+1)'~'f, where
$=4(q'+1)=square of the total c.m. energy. If we
assume that A satisies the Mandelstam representation
we have

1 " A ~(t',s)
A (s,t) =— dt'

go

where A & is the absorptive part in the t channel and tp

is the square of the mass of the lowest intermediate
state in that channel. Comparing Eqs. (3) and (8) we
see that the requirement that the Schrodinger equation
give the correct relativistic amplitude at k2=q2 is
equivalent to putting

The above method is particularly useful if A & has to
be known accurately only for small values of t. Of
course, it never has to be known in the region where the
Regge behavior' dominates for both A& and o., since
then the two terms in Kq. (11)can be shown to cancel. '
However, it would not even have to be known too
accurately for moderate values of t if e should turn out
to be either weak. or repulsive there. The latter would
naturally be the most desirable case. While nothing can
really be said until an actual calculation is carried out,
Eq. (11) suggests that this may not be an entirely
farfetched possibility, since the last term in that expres-
sion may well turn out to correspond to a repulsion, at
least for small values of q2. If it also overwhelms the erst
term at moderate t we would in fact have a potential
with a repulsive core.

3. THE CROSSED-CHANNEL ABSORPTIVE PART

One way of obtaining A, (t,s) is through the strip
approximation. ~ We shall only consider a somewhat

simplified version of this method. In lowest order we
assume that A g can be expressed in terms of a small
number of partial waves in the t channel. It thus has the
form

A &"~(t,s)= Q (2t+1) ImA &(t)P &$1+ (2$/t —4)j, (13)
L=p

n(k", t)
X dk", (10)

(k 2 gs) (k 2 ks)

which together with Eq. (5) forms a nonlinear 'integral

equation for f&(t,ks) for any given A &(t,s). This equation
can be solved by iteration. Suppose we associate a
parameter X with A & and drop the last term in Eq. (10).
Then because of the 8 function in Eq. (5) the resulting

f~ will be correct in the region ts(t&4ts. If we then
insert this f& into Eq. (5), the resulting Eq. (10) will

give f& correctly in the region ts(t&9ts. In general, if
we keep only terms up to order X", we will have f& exact
in the region ts&t( (m+1)'ts.

Once we know fq and n from Eqs. (5) and (10),we can
find the potential by combining Eqs. (9) and (4). This
gives

where A ~ is a partial-wave amplitude. Since A has been
assumed to 'satisfy a Mandelstam representation, we
have

1 " 1 2
A ~(t,s) =A,"' (t,s)+ ds'p (s', t)—

7l 4 s' —s t—4

L 2s' ) 2s
X Z (2t+1)Q~I 1+ l~rl 1+ I, (14)t-4i E t 4j-

where we have subtracted out the lowest order term.
This subtraction has the effect of suppressing the high s'
part of the integral in Eq. (14), and so we need consider
only that part of the double-spectral function p which
comes from elastic s-channel unitarity.

From unitarity we have4
n(k", t)

dk"
oo

v (t,q') = 2s 'isA g(t, s) ——
p k"—q2

A,*(t',$)A, (t",s)
dt' dt"(11)

p(s, t) =
v g+S go E'~'(q' t t', t")

XeLt—t (q')), (15)
Thus, if we use the above iteration scheme and keep
only terms up to order X", Kq. (11) will give v(t, qs)

correctly in the region ts&t& (x+1)sts. Of course, we
have been assuming that we know A & exactly. If we go
only up to order X" we would need it only for
t& (v+1)sts. Once we know the potential we can solve
the equation

V'Q+ Lqs —V(r,qs)]P= 0 (12)

where E and t+ are defined by Eqs. (6) and (7). As in
the preceding section, we can associate the parameter X

with A&&'& and use Eqs. (14) and (15) to set up an
iteration scheme. If we drop the integral term in Eq.
(14) we will have A~ for ts&t&4ts because of the 8
function in Eq. (15).If we insert this lowest order term
into Eq. (15), Eq. (14) will give A& for t«t(9ts, in

~ T. Regge, Nuovo Cimento 14, 95k (1959).
6 The author would like to thank Professor B. M. Udgaonkar

and V. Trivedi for a discussion on this point.' G. F. Chew arid S. C. Frautschi, Phys. Rev. 123, 1478 (t961)

to obtain the correct amplitude at the energy corre-
sponding to q'. Since the above procedure can be carried
out for any value of q2, we can get the correct amplitude
at any energy.
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general, Eq. (14) will then diverge, so we may have to
subtract out an additional number of waves to guarantee
convergence. If we repeat this procedure until we have
all the terms up to order A, ",we will have A ~ in the region
&,&t& (m+1)'t, .

The above scheme presupposes a knowledge of the low
partial waves. However, these can be found by solving
the Schrodinger equation (12) in the crossed channel. In
particular, this will give the bound states and reso-
nances. Of course, our method for obtaining A& is valid
only for moderate energies, since otherwise Eq. (13)
will no longer be meaningful.

Finally, it should be noted that the procedure of this
section leads to real v. Suppose we keep only terms up to
order X" in the iteration schemes of both Secs. 2 and 3.
This will give v correctly in the region to&/& (n+1)'t0.
Now Eqs. (11) and (14) give

Imv(t, q') = 2s "'p(s, t) —cK(q', t) .

Ilut we are requiring Eq. (9) in each order. Thus Eqs.
(5) and (15) will give 2s '~'p(s, t) =n(q', t), if we keep all
the terms up to order X" in each case. Hence, Imp=0.

4. LOWEST ORDER CALCULATION
OF THE y AND p MESONS

We shall now illustrate the above method by doing
a crude lowest order calculation of the p. Assuming that
the p meson dominates A& in the xm problem, we have
in the s-channel I= 1 state

A &(t,s) = 3p|~ ImA ~(/) P~$1+ (2s/t —4)7, (16)

where the crossing matrix element connecting I=1 in
the t channel to I= 1 in the s channel is P~~ ———,'. We shall,
as usual, make a delta-function approximation for the
resonance

ImA, (t) =4~r,q~'S(t —m'), (17)

where 2(qz'I'q/m) is the half-width in the q' variable,
q~' ——~m' —1, and m is the mass of the p. Combining
Eqs. (16) and (17) we see from Eqs. (11) and (2) that
in lowest order the effective potential in the I=1, 3=1
state is

V(r, q') = —24PnI'qs '~'(s+2qg')r 'e ~', (18)

where the extra factor of 2 comes from the fact that we
have contributions from both t and N channels.

To solve Eq. (12) we shall use a standard expression'
for the phase shift

which is stable with respect to variations in the wave-
function N~. Thds we should get a reasonable result even
with a crude approximation for N~ which, moreover,
does not have to be normalized in any way or be correct
outside the range of the force. We therefore take roughly
the form we can expect it to have if the p were a bound
state

g&(r) —r2e mr— (20)

and assume it to be energy-independent. Finally, we
make an effective-range approximation by expanding
about q'=0 to obtain

where

and

2s ~
q cot6y= Gg —f q

128m 1

811'g (m'+4) 2

(21)

(22)

128m'm Sm'
r, =—(37—8')— 1—

32 811'g(m'+4) m'+4
(23)

Equation (21) will give a resonance at q'= a,r, ', with
a reduced width F~=r, '. The latter relation can be
trivially solved to 6nd F& in terms of m. Using this result
we can then try various values of m and see whether the
condition qg'=a, r, ' is satisfied. Approximate self-
consistency was achieved with I'i=0.55 and m=3.9.
This is to be compared with the experimental values of
I'q ——0.16 and m= 5.5 (765 MeV). A plot of the partial-
wave cross section obtained from Eq. (21) gave a width
of about 160 MeV. The corresponding experimental
value is 100 MeV.

The above calculation can also be carried out for the
q meson in EE scattering. We assume that p exchange
dominates and determine the pEE coupling constant
in terms of the experimental pn-vr coupling through SU(3).
If we take the experimental p mass, the potential is fixed
and there is no self-consistency problem. Equation (21)
now gives a resonance in the J=0, /= 1 state, with mass
= 1435 MeV and reduced width =0.021.The correspond-
ing experimental values are 1020 MeV and 0.010, respec-
tively, if the full width is taken to be 3 MeV.

S. ALTERNATIVE TECHNIQUE FOR CONSTRUCTING
THE EQUIVALENT POTENTIAL

An alternative way of constructing the equivalent
potential is to use the Lippmann-Schwinger equation
corresponding to (1)

cori=
0

dr qrj ~(qr) VN~ q dr VuP
0

dr qrn~(qr) V(r, q') Ni(r)
(2m)' p2 P2

c (k',k) = W$—(k' —k)', q'7

d'p WL —(k' —p)', q'74 (p,k)
(24)

dr'qr'j, (qr') V(r', q2)e&(r'), (19)

8 See, for instance, P. M. Morse and H. Feshbach, methods of
Theoretica/ Physics, Part II (McGraw-Hill Book Company, Inc. ,
New York, 1953), p. 1j.28.

1 " v(t', q')
W(t, q') =— df

go
t' —t

(25)

where 8' is the Born approximation of the potential



g (553

fpr k'= 0'

(k)2 2 t) =2$—1/2 tS +p iV

2 p2 we have c k', k)
at we ca, write

js suc h that whenand . ;9 has shownf(k2 t) Fu 1111

Sm to
QO

11 2x g(k)2t'P t jt

q, (k",k', t')
1

7
c (k',k) =

t)+ (k' —k)'
(26)

t, 0

3$) constitu«a pF r a g1ve11A)( )

l uat1ons fopus integra e
n. gn lpwes

of simultaneou
1 ed by iteration

1 . Then

lt1ng 1) all )jc,
t grals of Eqs (eI't these into t

t&9«
(27) lf we inser

d correct for to& '
mplicated

7

(2g) than t;
ltaneously Of c

hether we solve
eq

1 e uivaeI
meter X w ic

ons sim
] t. Thisjstruew

h h we
arecompletey q

d in the param
e sa,w,

xpan n
cedure, as

them exac y)
. The latter proc

1)2t if we
associa, ted wi

'
the region to

ith A1 e
t& rz+p correct in t eleads to a ~

prder ~".
'

is tha, t it
terI11s uP

of thj, s se "
keep pn y

f the method
11 Mandelstam

quiren1ent One ae advantage o
the validity o

pn ela,stic

~ '
pf the fu

~ ~

e en on
ttering pr

re a ivistic dpes npt p
tion for pp e

t an equivae
tent»1 s

'
1 nt pp

representatip
construe

ptential
Thus w

ffects such a po
9 unitar y

f had inelastic e '
f stance, tha

29

wpuld in gen
ds fpr believing "

t-channel.

Then I
e]. of t e

re ipn is n
f some n1

et a
;mpprtant, o '

M be able to g

IS in1

we s pu
12 .

ai.t Can be f '
b Splving Kq.

range Par '
al amPlitude yreasonable Physica

OMEN&s

.
th sat;sfying the q

2

(k)2 k2 t) = 'v(t)q )+
8m' to

00

1 11 P2dt"g(k", t p '

(tfl q2) 22(p )k ) )
X

2 k2 —ze

x=0 , &t. gt")e(~)i ~
where

k+P) ('+'+'"

2k'(t'+k'+P )

2k 2

(t"+k +P )
(t+k2+k )

that the re8 and (26) we see tha
of E . (27) give the correcth t the solution of Kq

litude at k =q '
amphtu

( 'q', t)=2s

b 'ng this with q.b' 'ng ' ' E . (27), we haveCombining

2

z)(t q') =2s A,q — '" ts)—'V

Co

1, t11Ct"E(q', t; p', t; t,q

~N I ERACTFOR STROPO TFNTT I A L APPROACH F

~0 dp

' ' t')i(p' —q' —Ze). (30X1)(t,q ) y(p, q

a ' nttosu s id n b t tutethisintoEq. 27a t is convenienT06n pl I 11

es Presented a uh sics, Lecturesheoretical 2' yS. P. Fubini,
Seminar, Trkieste, 16 Juy-
Knergy Agency, glenn,

ou ress his gratitu eould like to ex r s
B. M. Udgaon ar 1 ep

kb thh nd
th Ttk dho t ltMenon for their kin o


