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Equations are given for constructing an equivalent potential at each energy from the crossed-channel
absorptive part. These are straightforward generalizations of the Charap-Fubini formulas. The absorptive
part can be calculated with the help of the strip approximation. If we solve our equations by iteration, we
can get the potential more and more accurately at smaller distances. The first approximation consists of an
appropriate number of crossed-channel partial waves which can be calculated by solving a Schrodinger
equation with an equivalent potential as input. The approach is applied in lowest order to calculate the

parameters of the p and ¢ mesons.

1. INTRODUCTION

WAY of defining a potential in strong interactions

was given by Charap and Fubini.! The potential
was chosen so that solving the Schrddinger equation
would give the correct relativistic amplitude at zero
kinetic energy. This potential was shown to have a wide
range of validity. An explicit iterative scheme was also
proposed for constructing such a potential from the
crossed-channel absorptive part.

In Sec. 2 we shall generalize the Charap-Fubini ap-
proach by requiring that our potential reproduce the
relativistic scattering amplitude at any given energy.?
Such an equivalent potential will, of course, be different
at different energies. The absorptive part which we need
can be built up through an iterative solution of the
strip-approximation equations (Sec. 3). The lowest ap-
proximation will simply consist of an appropriate num-
ber of crossed-channel partial waves. These can, in
turn, be calculated by solving a Schrodinger equation
with an equivalent potential as input. Although such an
equation does not have, perhaps, any physical signifi-
cance except in the nonrelativistic region, it does serve
to enforce unitarity. This is just what the N/D method
does in the more usual approach.

The procedure we just described should give a reason-
able long-range force in lowest order. As we go to higher
orders we should get an increasingly accurate descrip-
tion of short-range effects. Thus the method is essen-
tially a low-energy method, since long-range forces are
more important at low energies. This would be par-
ticularly true if we had repulsive effects at small
distances. As we go to higher energies we would have to
treat short-range forces more and more accurately. We
would also have to go beyond two-body scattering.

* This work was begun while the author was at the California
Institute of Technology, Pasadena, California, where his work was
supported in part by the U. S. Atomic Energy Commission.
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2. CONSTRUCTION OF THE
EQUIVALENT POTENTIAL

Consider the Schridinger equation for two particles
VY+[B—V(r,¢) =0, ¢y

where ¥ =wave function, £=magnitude of the three-
momentum in the c.m. system, r=radial distance, and
V(r,g* is the potential which gives the correct rela-
tivistic amplitude when %%=¢2. For simplicity we shall
only look at the spinless one-channel problem for
particles of unit mass, although it would be straight-
forward to extend our results to a more general case. We
have also ignored exchange forces, since their inclusion
does not change our general arguments. If our potential
has the form

V(r,g)=—r"1 / div({l ,@)rle™v? (2)
t0

the physical scattering amplitude f(k%¢) satisfies the
Mandelstam representation.? Here f is such that the
differential cross-section= | f|2, while = — 2k?(1—cosf)
and 6= scattering angle in the c.m. system. Thus we may

write 12
F0,) = / iy 3

t'—t

where f, would be the absorptive part in the ¢ channel,
if there were a ¢ channel. It can be written in terms of
the double-spectral function a(k2 1) as

1)
(LR =0 (¢ /2 .
fltk) =t )+ e

From unitarity we find in the usual way*
SR (7R
aB)=— / dt’/ arrt
K2 (k2 1t z”)
XO[t—4. (&)1, (5)

(4)

where

KB 440" ) =0+ 12 =20+ +1'1")
3 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.) 10, 62 (1960).
4S. Mandelstam, Phys. Rev. 112, 1344 (1958).

—t't" k2 (6)
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and
"y ! 74

it ¢ i 12
t+(k2)=t’+l”+——+2[ (t’t”)(1+——)(1+———):| (7
k? 4k? 4k?

Consider now the Lorentz-invariant amplitude A4 (s,?)
when the c.m. three-momentum is ¢. This is related to
the physical amplitude f through 4 = (¢4-1)'2f, where
s=4(¢*+1)=square of the total c.m. energy. If we
assume that 4 satisfies the Mandelstam representation

we have
1 > A ,s)
A )= f :
™ to

{—t
where A, is the absorptive part in the ¢ channel and %
is the square of the mass of the lowest intermediate
state in that channel. Comparing Egs. (3) and (8) we
see that the requirement that the Schrédinger equation
give the correct relativistic amplitude at k?=g¢% is
equivalent to putting

fi(t,g)=25s724,(t,s). )

If we now subtract from Eq. (4) its value at £*=¢? and
use Eq. (9), we have

@)

2__ g2

fe(t,k®)=257124 ,(¢,5)+

™

® a (k1)
X/ dkt———, (10)
o (#FP—P)E—F)
which together with Eq. (5) forms a nonlinear integral
equation for f;(¢,k?) for any given 4.(Z,s). This equation
can be solved by iteration. Suppose we associate a
parameter A with 4, and drop the last term in Eq. (10).
Then because of the 6 function in Eq. (5) the resulting
fe will be correct in the region fo<t<4#. If we then
insert this f; into Eq. (5), the resulting Eq. (10) will
give f; correctly in the region #,<¢<9%. In general, if
we keep only terms up to order A", we will have f; exact
in the region fo<(< (n+1)%,.
Once we know f;and a from Egs. (5) and (10), we can
find the potential by combining Eqs. (9) and (4). This

gives
a(k’2t)

1 00
2) — 9 —1/2 _ 2,
2(2,q%) = 257124 4(1,5) . /; dk P

(11)

Thus, if we use the above iteration scheme and keep
only terms up to order A\*, Eq. (11) will give »(z,¢%)
correctly in the region fo<i< (n+1)%,. Of course, we
have been assuming that we know A4, exactly. If we go
only up to order A\* we would need it only for
t< (n+1)%,. Once we know the potential we can solve

the equation
V+[¢—V () =0 (12)

to obtain the correct amplitude at the energy corre-
sponding to ¢2. Since the above procedure can be carried
out for any value of ¢, we can get the correct amplitude
at any energy.
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The above method is particularly useful if 4, has to
be known accurately only for small values of ¢ Of
course, it never has to be known in the region where the
Regge behavior’ dominates for both 4. and «, since
then the two terms in Eq. (11) can be shown to cancel.®
However, it would not even have to be known too
accurately for moderate values of ¢ if » should turn out
to be either weak or repulsive there. The latter would
naturally be the most desirable case. While nothing can
really be said until an actual calculation is carried out,
Eq. (11) suggests that this may not be an entirely
farfetched possibility, since the last term in that expres-
sion may well turn out to correspond to a repulsion, at
least for small values of ¢2. If it also overwhelms the first
term at moderate ¢ we would in fact have a potential
with a repulsive core.

3. THE CROSSED-CHANNEL ABSORPTIVE PART

One way of obtaining A,(f,s) is through the strip
approximation.” We shall only consider a somewhat
simplified version of this method. In lowest order we
assume that A, can be expressed in terms of a small
number of partial waves in the ¢ channel. It thus has the
form

A= 3 QI+ 1) Tmd (P [1+ 2s/i—4)], (13)
=0

where A is a partial-wave amplitude. Since 4 has been
assumed to satisfy a Mandelstam representation, we
have

A(t,s)=4,9@,s)+— / ds'o(s’ t)[

s'—s t—4
L 2s’ s

X (2z+1)Q,(1+—)Pz(l+——)] , (14)
1=0 t—4 —4

where we have subtracted out the lowest order term.
This subtraction has the effect of suppressing the high s’
part of the integral in Eq. (14), and so we need consider
only that part of the double-spectral function p which
comes from elastic s-channel unitarity.

From unitarity we have?

A *(t $)A (,s)
d /
il
(15)

K1/2(q2 t,t,8")
Xa[t—t+(92):| ’

where K and ¢, are defined by Egs. (6) and (7). As in
the preceding section, we can associate the parameter A
with 4, and use Egs. (14) and (15) to set up an
iteration scheme. If we drop the integral term in Eq.
(14) we will have 4. for #,<t<4f, because of the 8
function in Eq. (15). If we insert this lowest order term
into Eq. (15), Eq. (14) will give 4, for £,<¢<9%; in

5 T. Regge, Nuovo Cimento 14, 951 (1959).

¢ The author would like to thank Professor B. M. Udgaonkar

and U. Trivedi for a discussion on this point.
7 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).
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general, Eq. (14) will then diverge, so we may have to
subtract out an additional number of waves to guarantee
convergence. If we repeat this procedure until we have
all the terms up to order A", we will have 4,in the region
to<t< (n+1)%,.

The above scheme presupposes a knowledge of the low
partial waves. However, these can be found by solving
the Schrédinger equation (12) in the crossed channel. In
particular, this will give the bound states and reso-
nances. Of course, our method for obtaining 4, is valid
only for moderate energies, since otherwise Eq. (13)
will no longer be meaningful.

Finally, it should be noted that the procedure of this
section leads to real v. Suppose we keep only terms up to
order A in the iteration schemes of both Secs. 2 and 3.
This will give v correctly in the region fo<{<< (n-1)%,.
Now Egs. (11) and (14) give

Imy (t7 2) = 25—1/21) (Syt) —a (112,'5) .

But we are requiring Eq. (9) in each order. Thus Egs.
(5) and (15) will give 2572 (s,t)=a(g?1), if we keep all
the terms up to order A" in each case. Hence, Imy=0.

4. LOWEST ORDER CALCULATION
OF THE ¢ AND ¢ MESONS
We shall now illustrate the above method by doing
a crude lowest order calculation of the p. Assuming that
the p meson dominates 4, in the == problem, we have
in the s-channel /=1 state

A(t,5)=3Bu ImA () PA[1+ (2s/t—4)],  (16)

where the crossing matrix element connecting /=1 in
the ¢ channel to 7=1in the s channel is 1= %. We shall,
as usual, make a delta-function approximation for the

resonance
ImA 1(t)=47r1‘1q1¢25(t—m2) 5 (17)

where 2(gz*T1/m) is the half-width in the ¢ variable,
gr?=%m*—1, and m is the mass of the p. Combining
Egs. (16) and (17) we see from Egs. (11) and (2) that
in lowest order the effective potential in the =1, I=1
state is

V(r, 2) = — 24ﬁ11111$_1/2 (S-l— ZqR"‘)r"le*”" y (18)
where the extra factor of 2 comes from the fact that we
have contributions from both ¢ and # channels.

To solve Eq. (12) we shall use a standard expression®
for the phase shift

00 —2, 00
cotd; = [ / dr qrji(qr) Vul] [q / dr Vug?
0 0

—2‘/«> dr grni(qr)V (r,¢®)us(r)
0

x f ot i)V, 2>u1<r'>], (19)

8 See, for instance, P. M. Morse and H. Feshbach, Methods of
Theoretical Physics, Part II (McGraw-Hill Book Company, Inc.,
New York, 1953), p. 1128.
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which is stable with respect to variations in the wave-
function #;. Thus we should get a reasonable result even
with a crude approximation for #; which, moreover,
does not have to be normalized in any way or be correct
outside the range of the force. We therefore take roughly
the form we can expect it to have if the p were a bound
state

u1(r) =72,

(20)

and assume it to be energy-independent. Finally, we
make an effective-range approximation by expanding
about ¢?=0 to obtain

2571203 cotdy=a.—7.q?, (21)
where
128m 1
ae=m3[———] (22)
81T (m2+4) 2
and
m 128m? |‘ 8m?
7o=—(37—8m?)— 1— :I (23)
32 8T (me+ )L metd

Equation (21) will give a resonance at ¢?=a.,7%, with
a reduced width I';=7,"1. The latter relation can be
trivially solved to find I'; in terms of . Using this result
we can then try various values of m and see whether the
condition ¢r’=a.r," is satisfied. Approximate self-
consistency was achieved with I'1=0.55 and m=3.9.
This is to be compared with the experimental values of
I'1=0.16 and m=35.5 (765 MeV). A plot of the partial-
wave cross section obtained from Eq. (21) gave a width
of about 160 MeV. The corresponding experimental
value is 100 MeV.

The above calculation can also be carried out for the
¢ meson in KK scattering. We assume that p exchange
dominates and determine the pKK coupling constant
in terms of the experimental prr coupling through SU(3).
If we take the experimental p mass, the potential is fixed
and there is no self-consistency problem. Equation (21)
now gives a resonance in the 7=0, /=1 state, with mass
= 1435 MeV andreduced width = 0.021. The correspond-
ing experimental values are 1020 MeV and 0.010, respec-
tively, if the full width is taken to be 3 MeV.

5. ALTERNATIVE TECHNIQUE FOR CONSTRUCTING
THE EQUIVALENT POTENTIAL

An alternative way of constructing the equivalent
potential is to use the Lippmann-Schwinger equation
corresponding to (1)

@ (k' k) =W[— (k'—k)?, ¢*]
+ / @p W[—(k'—p), ¢*1®(p,k)

2x)? pP—k2—ie
where W is the Born approximation of the potential

o0 ! 2
/ dt,v(t, )
)

t {—1

, (29

1
W(lvq2) =-

™

(25)
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and ® is such that, when £?=%?, we have ®(k’k)
= f(k2,t). Fubini® has shown that we can write

1= (kR
&k’ k)=- / df'——, (26)
vty U+ (K—k)?
with ¢ satisfying the equation
0 dp2 00
¢(k,2;k27t)=v(t}qz)+/ ——/ dtl
0 8w to
X / dt'R (k2,5 p2t 5 1 k?)
o
v(",¢") e (PR R%Y
JOD RN
pPP—kr—ie
where
R=0(\/t—~/t'—/1")8(8)//A (28)
and
2k "+E* 4% HEHE?)
A=—Z|(¢"+E*+p) 2p? +E24p%)|.
R (R 2k2

From Egs. (8) and (26) we see that the requirement
that the solution of Eq. (27) give the correct relativistic
amplitude at k2= ¢? is equivalent to putting

60(42, 21t) =25"124 t(txs) .
Combining this with Eq. (27), we have

0 dp2 00
o(t, 2)=25‘1/2A,(t,s)—/ —/ ar
0 87{'2 to

X / dt"R(gt; p2 5 1 g%)
to

(29)

Xo(", @) o($%,¢)/ (2 — ¢—ie).
Tofind ¢itis convenient to substitute thisinto Eq. (27)

(30)

®S. P. Fubini, Theoretical Physics, Lectures Presented at a
Seminar, Trieste, 16 July-25 August 1962 (International Atomic
Energy Agency, Vienna, 1963), p. 347.
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fork?=¢g?
00 dP2 0
¢(k,2’ 2:t)=25—1/2A t(tys)+/ _/ ar
0 8n? to

X f QTR P05 )
to
—R(¢%¢; p20 517,67 ]

Xv(," ) o(p*,¢%0)/ (pP—¢—ie).  (31)

For a given 4.(1,s), Egs. (30) and (31) constitute a pair
of simultaneous integral equations for ¢ and 9. As in
Sec. 2, they can be solved by iteration. In lowest order
we just drop the last terms in Egs. (30) and (31). Then
because of the 6 function in the definition (28) of R, the
resulting v and ¢ will be exact in the region #o<#<4#o.
If we insert these into the integrals of Egs. (30) and (31)
we will have v and ¢ correct for £,<t<9%,, etc.

The above procedure is probably more complicated
than the one in Sec. 2 since we have to solve two
equations simultaneously. Of course, the two methods
are completely equivalent. This is true whether we solve
them exactly, or expand in the parameter A which we
associated with A4,. The latter procedure, as we saw,
leads to a v correct in the region f,<t< (n-+41)%, if we
keep only terms up to order ™.

One advantage of the method of this section is that it
does not depend on the validity of the full Mandelstam
representation for potential scattering or on elastic
unitarity. Thus we could construct an equivalent po-
tential even if we had inelastic effects; such a potential
would in general be complex. Suppose, for instance, that
we have some grounds for believing that 4, for low ¢ is
well approximated at some energy by a few ¢-channel
Regge poles, but that the full amplitude in the physical
region is not. Then if only the long-range part of the
potential is important, or if some model of the short-
range part can be found, we should be able to get a
reasonable physical amplitude by solving Eq. (12).
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